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Abstract. Over last two decades, numerous studies have used remotely sensed
data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to
map land use and land cover at large spatial scales, but achieved only limited
success. In this paper, we employed an approach that combines both AVHRR
images and geophysical datasets (e.g. climate, elevation). Three geophysical data-
sets are used in this study: annual mean temperature, annual precipitation, and
elevation. We first divide China into nine bio-climatic regions, using the long-
term mean climate data. For each of nine regions, the three geophysical data
layers are stacked together with AVHRR data and AVHRR-derived vegetation
index (Normalized Difference Vegetation Index) data, and the resultant multi-
source datasets were then analysed to generate land-cover maps for individual
regions, using supervised classification algorithms. The nine land-cover maps for
individual regions were assembled together for China. The existing land-cover
dataset derived from Landsat Thematic Mapper (TM) images was used to assess
the accuracy of the classification that is based on AVHRR and geophysical data.
Accuracy of individual regions varies from 73% to 89%, with an overall accuracy
of 81% for China. The results showed that the methodology used in this study
is, in general, feasible for large-scale land-cover mapping in China.

1. Introduction
Accurate and timely information on land use and land cover at the regional scale

is needed for biogeochemical, hydrological and climate modelling. Over the last two
decades, numerous studies have used remotely sensed images from meteorological
satellites (e.g. Advanced Very High Resolution Radiometer (AVHRR) sensors) to
map land use and land cover at large spatial scales. The AVHRR sensors provide
daily observations of the Earth at 1–4 km spatial resolutions. The Normalized
Difference Vegetation Index (NDVI), which is calculated either from the digital
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number or reflectance values of Channel 1 (red band) and Channel 2 (near-infrared
band) of the AVHRR sensors, is related to vegetation condition and phenology
(Goward et al. 1985, Lloyd 1990). Multi-temporal AVHRR data have been used to
generate land-cover maps for various regions in the world, e.g. Africa (Tucker et al.
1985), North America (Goward et al. 1985, Loveland et al. 1991, Zhu and Evans
1994) and South America (Stone et al. 1994). To meet the need of global land-cover
data for global change research (IGBP 1990, 1992), multi-temporal AVHRR data
were also used to produce global land-cover maps (Defries and Townshend 1994,
Defries et al. 1995, Loveland et al. 2000, Hansen et al. 2000).

The AVHRR NDVI-based approach has made substantial contribution to land-
cover characterization at regional and global scales, however there is still room for
further improvements. The relatively low accuracy is due to both the coarse spatial
and spectral resolutions of AVHRR data, and the confusions between some land-
cover types (Scepan 1999, Scepan et al. 1999). When performing land-cover classi-
fication, problems exist in discerning land-cover types with similar phenology
(Townshend et al. 1991), as some land-cover types share similar spectral reflectance
characteristics.

At regional to global scales the spatial distribution of vegetation is closely related
to environmental conditions, including elevation, climate (temperature and precipita-
tion) and soils. Rapid development and wide applications of Geographical
Information System (GIS) technology in natural resources and environment have
generated many kinds of geographical datasets that are related to land-cover types.
Remotely sensed data are also an important information source for GIS in natural
resources management (Trotter 1991). A few studies have demonstrated that incorp-
oration of ancillary data embodied within a GIS can aid interpretation and labelling
of spectral clusters and improve land-cover classification. When classifying a Landsat
Multi-Spectral Scanner (MSS) image for Olympic National Park, Washington,
Cibula and Nyquist (1987) used terrain data and climatological data (temperature
and precipitation), and the number of land-cover types that could be differentiated
increased from 9 to 21 classes, and the overall accuracy of the classification increased
to 91.7%. Liu et al. (1998) used a GIS-embodied model that described observed
relationships between land cover, slope and elevation, and significantly improved
the vegetation classification of a Landsat Thematic Mapper (TM) image of Helan
Mountain in China. Brown et al. (1993) used multi-source data (coarse resolution
satellite images and ancillary data) for global land-cover characterization. Ancillary
data (digital elevation, temperature, precipitation and frost-free period) were used
for post-classification refinement of AVHRR data, and an improved map of land-
cover types for the conterminous USA was generated (Brown et al. 1993). Giri and
Shrestha (1996) used terrain data and 1 km AVHRR images to map vegetation
distribution in Bangladesh and an overall classification accuracy of 75% was reached.
Liu et al. (1998) used geophysical data (precipitation, temperature, elevation) to
generate a geo-environmental image by principal component analysis (PCA), which
was then overlaid on an AVHRR image for a supervised vegetation classification of
Northeast China. The new method substantially improved the land-cover classifica-
tion in Northeast China, in comparison to the conventional classification method
that was based only on AVHRR image data (Liu et al. 1998).

In this study we combined coarse resolution 1997 AVHRR data and ancillary
geophysical data (elevation, mean annual precipitation and mean annual temper-
ature) to map land cover in China. The geophysical datasets are organized and
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processed within a GIS. Fine-resolution land-cover maps derived from Landsat TM
data were used for image interpretation and validation. The objectives of the study
are twofold: (1) to quantitatively assess the potential of the multi-source data (remote
sensing/GIS) approach for land-cover classification at the continental scale; and
(2) to generate an accurate and updated land-cover map of China at 1 km spatial
resolution.

2. Description of AVHRR imagery and geophysical datasets
2.1. AVHRR data

The Chinese National Bureau of Meteorology has ground receiving stations for
AVHRR sensors and is responsible for acquisition and pre-processing of daily
AVHRR data for China. Routine pre-processing of AVHRR data include radiometric
correction, geometric correction and atmospheric correction. Monthly and seasonal
composites of AVHRR data are also generated and provided to users, based on
maximum values of NDVI. Four seasonal composites of AVHRR data in 1997 were
acquired for this study: Spring (February to April 1997), Summer (May to July
1997), Fall (August to October 1997) and Winter (November and December 1997,
and January 1998). All four seasonal composites include all the channels of AVHRR
data and NDVI at 1 km spatial resolution. The images have a dimension of 4280
rows and 5502 columns, covering all the territory of China, and are in the Albers
Equal Area Map Projection.

2.2. Geophysical datasets
A number of geophysical datasets were collected and organized for this study,

including elevation, climate, fine-resolution land-use and land-cover maps, and
administrative boundary maps. The digital elevation (contour) dataset was originally
digitized and refined from topographic maps at 1:1 000 000 scale by the National
Geographical Information Center of National Survey and Mapping Bureau. The
vector-format elevation data were converted into raster (grid) format at 1 km spatial
resolution (figure 1), using Arc/Info GIS software. For climate data we collected
daily weather records of 361 meteorology stations in China over the period of
1959–1990 from the Chinese Bureau of Meteorology, and calculated mean annual
temperature (figure 2), annual precipitation (figure 3), cumulated temperature (base
0°C, 10°C), and humidity index. A point coverage was generated for all the 361
weather stations, using Arc/Info GIS software. Climate data from the weather stations
were then interpolated into a 500m by 500m grid, and the temperature fields were
further adjusted using the Digital Elevation Model (DEM; 1:1 000 000), following
the assumption that temperature decreases by 0.6°C when elevation increases by
100m. Because of the nature of the source data, these climate data represent contin-
ental climate conditions and does not represent local or microclimate conditions.
Elevation and climate data are input datasets for supervised classification, while the
other geophysical datasets were used for masking, interpretation and labelling of
classification clusters. All the geophysical datasets are in Albers Equal Area Map
Projection (with the same projection parameters as the AVHRR dataset).

To select training signatures of various land-cover types for AVHRR imagery,
we use (1) the Vegetation Map of China at the scale of 1:4 000 000, which was
produced by the Institute of Botany, Chinese Academy of Sciences; and (2) the
National Land Cover Dataset (NLCD-96) at 1:100 000 scale (Liu and Buhaeosier
2000). The Vegetation Map of China, which was based on field surveys and satellite
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Figure 1. Digital elevation model of China.

images in the early 1980s, was used primarily to define training signatures of forest

types. The NLCD-96 dataset is composed of 25 land-use and land-cover types and

was used as the main reference for signature training and consistency checking. The
NLCD-96 dataset was developed through the National Land Cover Project that

was organized by the Chinese Academy of Sciences with participation of over 100

scientists from eight research institutions. Over 500 Landsat TM images acquired in

1995 and 1996 were used to generate 1:100 000 scale maps of land cover in China

(Liu and Buheaosier 2000). It is temporally and spatially adequate for signature

training and accuracy assessment. It should also be noted that the NLCD-96 data

classes represent a mix of land use and land cover. Most ‘natural’ landscape units

(e.g. wet land and forest classes) represent land cover, whereas those heavily impacted

by anthropogenic activities (e.g. urban and agricultural classes) represent land use.

The primary focus of this study is to map land cover and, thus, the NLCD-96 classes

are not always compatible with the target land-cover classes in this study (table 1).

When performing land-cover classification using AVHRR data, cities could not

be uniquely identified because of complex mixtures of surface conditions within a

1 km urban pixel. City distribution information was extracted from the NLCD-96

dataset and rasterized to a binary city mask. After classification of AVHRR imagery,

it was added into the classification result. Maps of province and country political

boundaries at a scale of 1:1 000 000 in 1995 from the National Survey and Mapping

Bureau were used to summarize the classification results by province and country.
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Figure 2. Annual mean temperature of China.

3. Methods
Land-cover mapping at continental to global scales needs to address unique and

difficult issues in data analysis: (1) large spatial and temporal variations in climate,
terrain, vegetation, and soil; and (2) large volumes of data, which require a high
capacity of computing resources (Loveland et al. 1991). In this study for China, we
used the following approach to address the first issue: to partition the continental-
scale study area into several smaller regions, and carry out classifications for indi-
vidual regions using different data layers that better describe land-cover character-
istics in a region, and finally mosaic resultant maps of individual regions into one
continental map of land cover. This approach involves three major phases (figure 4).
The first phase was to develop a regionalization scheme for China, based on climate
data. The second phase was to conduct a supervised classification for each of the
climatic regions. Finally, the third phase was to evaluate classification results by
region and create a mosaic product of land cover in China using the classification
results from different climatic regions.

At large spatial scales, vegetation growth and distribution are primarily associated
with climatic factors such as temperature and moisture. Aridity index (Gao 1996)
and cumulative temperature (base 0, 5, or 10° C) over a year are well-known
indicators of bio-climatic conditions and regions. The gridded long-term mean cli-
mate fields (see §2) were used to calculate aridity index (Gao 1996) and cumulative
temperature (base 10° C) in order to generate a map of climatic regionalization for
China. According to the criteria of temperature and moisture conditions (table 2),
nine climatic regions were defined for China (figure 5). The advantages of the climatic
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Figure 3. Annual mean precipitation of China.

regionalization approach include (1) defining a relatively homogeneous region and
having the potential of reducing classification confusion in a region; (2) selecting
appropriate temporal AVHRR images according to unique phenological character-
istics of different regions; and (3) delineating training signatures for supervised
classification with a higher confidence. Therefore, for all nine climatic regions of
China (figure 5), different sets of temporal NDVI images, AVHRR data, and climate
station data were selected (table 2). For Northeast China and North China, four
seasons of NDVI data were selected to calculate annual accumulated NDVI, in an
attempt to maximize the differences among various land-cover types. For the other
seven regions, only the images for the plant growing season (i.e. summer images)
were used.

PCA is a useful tool for analysis of multi-spectral remote sensing images (Roger
1996). It transforms a set of correlated spectral bands of image data into an equivalent
set of uncorrelated components of data. The main advantage of PCA is that the
transformed components can be ordered by decreasing variances. Typically, for
remote sensing data, just a few of the low-order components have large variance
and contain useful information, and the other high-order components look like noise.
In an earlier study (Liu et al. 1998), it was found that the first principal component
derived from AVHRR data contains over 80% of the information of AVHRR images,
and can be used as a representative band for vegetation interpretation. The image
of the first principal component (PC1) was generated to compress multi-spectral
imagery (Liu et al. 1998). In this study, PCA was used to process AVHRR data for
the nine regions of China and the resultant PC1 images were used for analysis.
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Table 1. Description of the land-cover classification system used in this study and the estimates of individual land-cover types for China from
supervised classification of AVHRR and geophysical datasets.

Land-cover types Symbol Description Area (km2)

Evergreen needleleaf forest C1 Lands dominated by needleleaf trees which remain green all year. 379 258
Deciduous needleleaf forest C2 Lands dominated by seasonal needleleaf tree communities with an annual cycle of leaf-on and 128 864

leaf-off periods.
Evergreen broadleaf forest C3 Lands dominated by broadleaf trees which remain green all year. 145 254
Deciduous broadleaf forest C4 Lands dominated by seasonal broadleaf tree communities with an annual cycle of leaf-on and 232 845

leaf-off periods.
Mixed forest C5 Lands dominated by tree communities with interspersed mixtures or mosaics of the four kinds of 58 029

forest cover type above. None of the forest types exceeds 50%.
Shrub C6 Lands with woody vegetation less than 2 m. 1 080 855
Dense grassland C7 Lands with herbaceous types. The canopy cover is >60%. 928 933
Moderate dense grassland C8 Lands with herbaceous types. The canopy cover is 20–60%. 508 940
Sparse grassland C9 Lands with herbaceous types. The canopy cover is 5–20%. 958 085
Farmland C10 Lands covered with temporary crops followed by harvest and a bare soil period (e.g. single and 2 077 498

multiple cropping systems).
Wetland C11 Lands with a permanent mixture of water and herbaceous or woody vegetation that cover 56 809

extensive areas.
City C12 Land covered by buildings and other man-made structures. 36 915
Water body C13 Oceans, seas, lakes, reservoirs and rivers. 124 235
Ice and snow C14 Lands under ice and/or snow and never have more than 5% vegetated cover in a decade. 79 397
Harsh desert C15 Lands expose soil and stone and never have more than 5% vegetated cover. 1 232 057
Sandy desert C16 Lands expose sand and never have more than 5% vegetated cover. 548 045
Bare rock C17 Lands expose rock and never have more than 5% vegetated cover. 485 507
Forest in Tibet region C18 Lands in Tibet region and dominated by trees including conifer, broadleaf and shrub. 436 129
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Figure 4. Processing flow phase 1: climatic regionalization of China using maps of cumulated
temperature (base 10°C) and aridity index. Phase 2: perform supervised classification
for each sub-region using the composite image derived remote sensing data and geo-
spatial information. Phase 3: accuracy assessment and classification results integrity.

Table 2. The criteria for defining bio-climatic regions of China, and AVHRR images that
were used for NDVI and PCA analysis for each bio-climatic region.

Criteria for bio-climatic region

Region Code Temperature Aridity index NDVI PCA

South China SC T>6500 A
r
<1.0 Su Su

East China EC 5100<T<6500 A
r
<1.0 Su Su

Central China CC 3300<T<5100 A
r
<1.0 Sp, Su, F, W Su

North China NC 3300<T<5100 1.0<A
r
<1.5 Sp, Su, F, W Su

ShanJin Area SJ 1700<T<4500 1.5<A
r
<4.0 Sp, Su, F, W Su

Inner Mongolia IM 1700<T<4500 1.0<A
r
<2.0 Su Su

Northwest China NWC 1700<T<4500 A
r
>4.0 Su Su

Northeast China NEC 1700<T<3300 A
r
<1.5 Sp, Su, F, W Su

Tibet TB Su Su

Seasonal AVHRR composites: Sp—spring, Su—summer, F—fall, and W—winter, T—
cumulative temperature over a year (base 10° C); A

r
—aridity index, calculated using the

following equation: A
r
=0.16T /r, where r is the precipitation in millimetres (Gao 1996).

For each of the nine regions, five data layers (NDVI, PC1, precipitation, temper-
ature and elevation) are stacked together and used for supervised classification. The
integrated image/geophysical datasets contain both spectral and geophysical informa-
tion of the land surface. Supervised clustering algorithms and maximum likelihood
classifications were applied to the datasets of the nine regions to generate classi-
fication clusters. The NLCD-96 dataset and published maps, including Vegetation
Map of China (Hou et al. 1982) and Atlas of Grassland Resources of China (Sue
1993), were used for selection of training signatures in the AVHRR images, and
interpretation and labelling of spectral clusters in relation to land-cover types.

In North China, Northeast China and East China, where there are diverse land-
cover types and similar spectral characteristics between grassland and some forests,
the binary decision tree method was applied to reduce classification confusion. Forest
distribution information was extracted from the NLCD-96 dataset using GIS, and
a binary mask of forest and non-forest was generated. The mask (forest, non-forest)
was applied separately, while performing classification of the integrated image/
geophysical dataset using the maximum likelihood algorithm (figure 6).
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Figure 5. Climatic regionalization of China.
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Figure 6. Land-cover classification of Northeast China using binary decision tree.

In this study, the Tibet Plateau was given additional consideration, due to its
unique environmental characteristics. The Tibet Plateau is referred to as ‘the third
pole’, which implies not only its high elevation, but also its extreme coldness.
Furthermore, the interaction of moisture and heat in the plateau, which contributes
greatly to the complex distribution of vegetation, are also incomparable to other
mountain areas that span a relatively small range. There are few meteorological
stations in the plateau, and climate data are inadequate to describe the precipitation
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Figure 7. Land-cover classification of China.

and temperature conditions. Therefore, we selected only three bands (NDVI, PC1
and DEM) to conduct the classification. In addition, most of the forests in the
plateau are distributed in narrow river valleys, making it difficult to discriminate
different forest types at 1 km resolution. In this study, we only assign one forest
cover type for land-cover classification in the plateau due to these difficulties in
forest identification and discrimination.

After interpretation and labelling of classification clusters in relation to land-
cover types for individual regions, classification accuracy assessment by regions was
conducted using the NLCD-96 dataset. The modified classification maps from indi-
vidual regions were assembled to generate a mosaic product of land cover for the
all of China. It is possible that some pixels along the adjacent boundaries in two
climate regions are one land-cover type (e.g. forest), but were assigned to two different
types of land cover according to the classification results for these two climate
regions, which would result in a ‘sudden’ but ‘false’ change in land-cover distribution
in the mosaic product. Land-cover mismatch along the boundaries between climate
regions is an inevitable problem that needs to be carefully addressed. Adjustment
should be done along the boundaries to make the land-cover allocation more
reasonable. In this study, the majority of pixels along the boundaries matched fairly
well. There is only a small amount of pixels that have land-cover mismatch along
the boundaries of climate regions, mostly attributed to the supervised classification
and the interspersed and cursive area boundary derived from climatic regionalization.
For those pixels that have mismatch in land cover along the adjacent boundaries,
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the NLCD-96 dataset was used for adjustment of land-cover types between the
adjacent boundaries.

4. Results and discussion
The basic vegetation distribution in China shown in the classification result could

be summed as Forests in north-eastern China, south-eastern China and part of the
Tibet region; Grassland in the Inner-Mongolia region, and Southwest China; farm-
land in the eastern part of the country; and large areas of sparsely vegetated land
and bare ground in Northwest China (figure 7). Total areas for all classes are shown
in table 1.

Assessment of land-cover classification accuracy is a complex issue. The coarse
resolution of AVHRR data leads to development of classes based commonly on
land-cover mosaics rather than on homogeneous landscapes. Accessibility of consist-
ent site data for verification is also a limitation. An additional complication is the
fact that the existing land-cover information is not based on well-defined categories
(Loveland et al. 1991). As a result, verification was limited to comparisons with
other datasets or maps. In this study, the land-cover data layers were compared with
the NLCD-96 dataset and vegetation map. Together, these data sources provide
users with useful information regarding the quality of the final land-cover product.
A sample of 200 AVHRR 1km pixels was randomly selected within each of the
climate regions. The geo-locations of those pixels were determined on the appropriate
reference map (NLCD-96 and vegetation map) for comparison. Class values of those
pixels from the AVHRR-derived final classification were obtained and compared
with the NLCD-96 dataset and vegetation map.

The assessment results (tables 3 and 4) showed that there is reasonably good
agreement between the land-cover dataset and the reference data. The overall accu-
racy of the land-cover classification was 80.6%. Some land-cover change likely
occurred between the dates of the AVHRR images and the dates of the reference
data (NLCD-96 and vegetation map in 1980s). It is difficult to ascertain the impact
of actual land-cover change on these values in this study. In addition, any errors in
the reference data will decrease the overall agreement.

The result from classification of AVHRR/geophysical data shows that land-cover
distribution patterns are reasonably consistent with other existing maps. Of the 17

Table 3. Accuracy assessment of land-cover classification for the nine bio-climatic regions in
China. It includes the overall accuracy and Kappa coefficient for all land-cover types
in a region.

Region Code Overall accuracy (%) Kappa (%)

South China SC 83.7 78.4
East China EC 79.5 68.7
Central China CC 88.6 82.0
North China NC 73.3 64.6
ShanJin area SJ 75.2 65.1
Inner Mongolia IM 77.6 70.8
Northwest China NWC 77.1 65.1
Northeast China NEC 84.8 75.3
Tibet TB 84.3 76.2

Overall accuracy 80.6
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Table 4. Accuracy assessment of different land-cover types.

Symbol of each region

Symbol Index SC EC CC NC NEC SJ NWC TB IM

C1 Eo 88.89 70.00 77.78 80.00 – – – – 100.00
Ec 58.54 65.63 70.00 90.24 – – – – 100.00
k 0.4892 0.578 0.686 0.8155 – – – – 1.0000

C2 Eo – – – – 93.75 – 83.33 – –
Ec – – – – 83.30 – 100.00 – –
k – – – – 0.7431 – 0.8002 – –

C3 Eo 52.78 53.33 – – – – – – –
Ec 70.37 44.44 – – – – – – –
k 0.6659 0.4032 – – – – – – –

C4 Eo – – 42.86 100.00 69.23 100.00 – – 50.00
Ec – – 60.00 75.00 69.23 66.67 – – 100.00
k – – 0.5556 0.746 0.6725 0.6634 – – 1.0000

C5 Eo 40.00 50.00 – – 72.22 – – – –
Ec 100.00 66.67 – – 81.25 – – – –
k 1.00 0.6604 – – 0.7030 – – – –

C6 Eo 66.67 81.16 89.19 72.34 75.00 75.00 55.56 – 77.27
Ec 86.39 83.58 86.84 75.56 78.95 93.75 100.00 – 70.83
k 0.8215 0.7593 0.8389 0.6758 0.7679 0.8872 0.5455 – 0.7069

C7 Eo – 30.43 66.67 57.14 83.33 40.00 84.62 84.72 80.00
Ec – 77.87 66.67 66.67 76.92 66.67 64.71 87.14 78.57
k – 0.7514 0.6617 0.654 0.7373 0.6567 0.832 0.7238 0.7044

C8 Eo 100.00 75.00 50.00 71.43 66.67 69.49 66.67 100.00 76.67
Ec 75.00 54.55 87.50 55.56 72.72 65.08 46.51 66.67 74.19
k 0.7067 0.4556 0.8657 0.3691 0.7112 0.5319 0.7078 0.6473 0.6313

C9 Eo – – – 70.00 100.00 – 76.92 74.36 40.00
Ec – – – 77.78 100.00 – 41.67 78.38 100.00
k – – – 0.7655 1.0000 – 0.6269 0.6506 1.0000
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Table 4. (Continued ).

Symbol of each region

Symbol Index SC EC CC NC NEC SJ NWC TB IM

C10 Eo 93.65 87.93 95.88 85.06 95.08 83.87 73.33 100.00 90.24
Ec 75.64 76.10 93.91 90.24 95.08 79.59 84.62 71.43 86.05
k 0.6035 0.6678 0.8618 0.8155 0.9300 0.628 0.7117 0.7072 0.8245

C11 Eo – – – 100.00 75.00 – – – 50.00
Ec – – – 83.33 60.00 – – – 50.00
k – – – 0.8289 0.5924 – – – 0.4949

C12 Eo 100.00 100.00 100.00 100.00 100.00 100.00 100.00 – 100.00
Ec 100.00 100.00 100.00 100.00 100.00 100.00 100.00 – 100.00
k 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 – 1.0000

C13 Eo 100.00 100.00 100.00 100.00 71.43 – 100.00 – 100.00
Ec 100.00 100.00 80.95 100.00 83.33 – 100.00 – 100.00
k 1.0000 1.0000 0.792 1.0000 0.8227 – 1.0000 – 1.0000

C14 Eo – – – – – – 100.00 100.00 –
Ec – – – – – – 66.67 80.00 –
k – – – – – – 0.6434 0.7961 –

C15 Eo – – – – – 75.00 84.00 56.25 50.00
Ec – – – – – 75.00 100.00 90.00 50.00
k – – – – – 0.745 0.7989 0.8863 0.4792

C16 Eo – – – – – – 90.91 – –
Ec – – – – – – 100.00 – –
k – – – – – – 0.8015 – –

C17 Eo – – – – – – 100.00 97.62 –
Ec – – – – – – 76.92 91.11 –
k – – – – – – 0.7010 0.8086 –

C18 Eo – – – – – – – 84.62 –
Ec – – – – – – – 75.86 –
k – – – – – – – 0.7241 –

Eo is the error of omission expressed as a percentage; Ec is the error of commission expressed as a percentage; k is the Kappa statistics. The
meaning of each symbol in the first column is listed in table 1.
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classes, water bodies, wetland, ice/snow, and desert are well identified, while other
land-cover types are dependent upon the climate regions. Farmland in Northeast
China, North China, Central China, Northwest China and Inner Mongolia regions
are clearly identifiable. Shrubland is well identified in the Central China, East China
and ShanJin regions. Satisfactory classification results of grassland in Inner Mongolia
and Northeast China were also obtained. Confusion of land-cover types varies in
different climate regions. In the east part of China, where there is adequate precipita-
tion, confusion occurs mainly among different forest types such as conifer, broadleaf,
mixed forest and shrub. In the semi-arid and arid areas, confusion tends to occur
between grasslands of differing densities, deserts and wetlands. Confusion between
farmlands and grasslands seems to occur in every climate region where both of these
two land-cover types co-exist. This is most serious in the ShanJin region, where
farmland and grassland mix in an interspersed distribution, leading to spectral and
temporal confusion in the classification.

In those climatic regions that are dominated by relatively large and homogeneous
landscapes (e.g. Central China, North China, Inner Mongolia, Northwest China),
land-cover types were relatively well identified, indicating that the strategy used is
acceptable in those regions for land-cover mapping. However, in spatially complex
areas such as East China and South China, the result of the classification was not
as good as was expected. Different vegetation types in these regions exhibited both
spectral and seasonal similarities. In addition, because of the homogeneous climatic
environment in these regions, geophysical data cannot effectively resolve the confu-
sion among natural land-cover types. Therefore, some other kinds of geophysical
data may be needed for improved land-cover classifications for those climate regions.

To further demonstrate the effectiveness of our approach of combining AVHRR
data and geophysical data, a supervised classification was performed in the Inner
Mongolia region using an AVHRR image alone. There is serious confusion among
farmland and different kinds of grassland. Its overall classification accuracy is only
58%, much lower than the accuracy (77.8%) from the approach that used both
remotely sensed data and geophysical information (table 3). Inclusion of geophysical
data makes a great contribution to the reduction of confusion in the land-cover
classification. Even though the comparison was only done in one climate region, the
accuracy difference is great enough to encourage further research in this area.
Comparisons in other climate regions should be part of future work to testify the
effectiveness of geophysical data in confusion reduction for different regions.

This preliminary evaluation indicates that the procedures used are generally
acceptable. This research has also illuminated many issues that remain to be
addressed. For example, the outcome of the NDVI-based classification was clearly
influenced by the weather during 1997. This influence is obvious on grassland with
different amounts of coverage. It is well known that growth of grass is closely
correlated to moisture conditions. Precipitation variation will directly lead to changes
in grass density, which will likely affect grassland classification of that year. Whether
there was climatic anomaly in 1997, and its specific effects on the classification are
uncertain and remain to be investigated.

It is also likely that the land-cover classification was affected by the quality of
the geophysical data. In the land-cover classification, problems existed in topograph-
ically complex areas such as the Yungui Plateau in East China region and Taihang
Mountain in North China region where the classification accuracy is below 60%.
As these regions cover a large latitudinal distance, elevation influence on climatic
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conditions varies. Because of the generalized nature in the source data, geophysical
data used here is related to continental climate conditions, not local or microclimate
conditions, which made it inadequate for representing vegetation patterns related to
elevation zones in irregular terrain. To achieve acceptable classification results, more
detailed geophysical data are necessary.

Selection of geophysical data is another issue that needs to be discussed.
Precipitation, temperature and elevation are used in this study, however they are
not the only factors that influence land-cover distribution. In spatially complex
regions such as East China and South China, where precipitation, temperature and
elevation have a limited role of reducing confusion of land-cover classification, some
other geophysical factors including slope, aspect and soil texture should be taken
into consideration.

5. Conclusion
Geophysical data, used in conjunction with remotely sensed data, can improve

the presentation of driving factors (climate, soil, etc.) and the spatial patterns of
vegetation distribution. This helps to improve the interpretation of images and
contributes greatly to increased accuracy and higher efficiency of remote sensing
classifications. Climatic regionalization was applied in this work to simplify the study
area into relatively small and environmentally homogeneous sub-areas for reducing
the confusion among land-cover types belonging to different regions. The result of
the classification indicates that this is a feasible way for large-scale land-cover
characterization in China. For further improvement of the classification, the following
work is required: (1) acquisition of new and more detailed geophysical data;
(2) improved analysis techniques in data exploration and visualization; and
(3) investigation in relationships among geophysical data and land-cover types.
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